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1. INTRODUCTION

The objective of structural reliability is to develop design criteria and
verification procedures aimed at ensuring that structures built according to
specifications will perform acceptably from a safety and serviceability view-
point. This objective could in principle be achieved by meeting the following
requirement: failure probabilities (i.e., probabilities that structures or
members will fail to satisfy certain performance criteria) must be equal to or
less than some benchmark values referred to as target failure probabilities.2
Such an approach would require [2, 13]:

l. The probabilistic description of the loads expected to act on the
structure.

2. The probabilistic description of the physical properties of the
structure which affect its behavior under loads.

3. The physical description of the limit states, i.e., the states in
which the structure is unserviceable (serviceability limit states) or
unsafe (ultimate limit states). Examples of limit states include:
excessive deformations (determined from functional considerations);
excessive accelerations (determined from studies of equipment perfor-
mance, or from ergonomic studies on user discomfort in structures
experiencing dynamic loads); specified levels of nonstructural damage;
structural collapse.

4. Load-structural response relationships covering the range of responses
from zero up to the limit state being considered.

5. The estimation of the probabilities of occurrence of the various limit
states (i.e., of the failure probabilities), based on the elements listed
in items 1 through 4 above and on the use of appropriate probabilistic
and statistical tools.

6. The specification of maximum acceptable probabilities of occurrence of
the various limit states (f.e., of target failure probabilities).

The performance of a structure would be judged acceptable from a safety or
serviceability viewpoint if the differences between the target and the failure
probabilities were either positive (in which case the structure would be
overdesigned) or equal to zero.

2 An alternative statement of this requirement is that the reliabilities
corresponding to the various limit states must be equal to or exceed the
respective target reliabilities (reliability being defined as the difference
between unity and the failure probability).
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from the reliability analysis of exemplary designs, i.e., designs that are
regarded by professional consensus as acceptably but not overly safe. Such
inferences are part of the process referred to as safety calibration against
accepted practice.

While there are instances where such a process can be carried out successfully,
difficulties arise in many practical situations. For example, structural reli-
ability calculations suggest that current design practice as embodied in the
American National Standard A58.1 [8] and other building standards and codes

is not risk-consistent. In particular, estimated reliabilities of members
designed in accordance with current practice are considerably lower for members
subjected to dead, live, and wind loads than for members subjected only to dead
and live loads {9, 13, 17], especiall¥ when the effect of wind is large compared
to the effect of dead and live loads. Whether these differences are real or
only apparent, i.e., due to shortcomings of current structural and reliability
analyses, remains to be established., Thus, it is not possible in the present
state of the art to determine whether it is the lower or the higher estimated
reliabilities that should be adopted as target values.

In spite of both theoretical and practical difficulties, structural reliability
tools can in a number of cases be used to advantage in design and for code
development purposes. The objective of this report is to present a review of
fundamental topics in structural reliability as applied to individual members,
which are potentially applicable to ocean engineering problems. These topics
include: the estimation of failure probabilities; safety indices; and safety
(or load and resistance) factors.

* The earliest justification of current desigﬁ practice with respect to wind

loading was traced by the authors to Fleming's 1915 monograph Wind Stresses
[10], which states: "Maximum wind loading comes seldom and lasts but a
short time. The working stresses used for the loading may therefore be
increased by 50% above those used for ordinary live~ and dead-loads.”
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where X(l) = extreme value of ¢(t) during a time interval t; = T/n, T = lif?t§me
of structure, n = integer and F (n) = cumulative distribution function of X‘P

The cumulative distribution function of X(l), F (1), is referred to as the

parent distribution of x(n), Equation 2 holds if successive values of X(1)
are identically distributed and statistically independent. An application of
equation 2 is presented in the following example,

Example. Let X(l) = U, denote the largest yearly wind speed at a given
Tocation. Then X{n) =°U denotes the largest wind speed occurring at

that location during an n-year period (equal to the lifetime of the structure).
It is assumed that the largest yearly wind speed, Uy has an Extreme

Value Type I distribution, i.e.,

FUa(ua) = exp [-exp(— )] (3)

It can be shown that

W= T, - 0.45 oy | (4)
a
o = 0.78 oy (5)
a
where‘ﬁa and oy = sample mean and sample standard deviation of the

a .
largest annual wind speed data, Uz. From Eqs. 2 through 5 it follows
that the probability distribution of the largest lifetime wind speed, U,

is:
Fy(u) = exp [-exp(-- Thy) (6)
v}
n
where
op = 0.78 oy (7a)
U=1T,+0.78 oy #n n (8)
a
gy = Oy (9)
a

and n = lifetime of structure in years.



elasticity, breaking strength)d, i.e.,

0= Q(X1, X2, ses Xp) (14)

R

]

R(Xl, Xz, XK Xn) (15)

Substitution of equations 14 and 15 into equations 10, 11, and 12 yields the
mapping of the failure region, safe region, and failure boundary onto the
space of the variables X;, X2, «e., Xz« The equation of the failure boundary
thus can be written as

g(X1, X2, ooy X) =0 (16)

The well~behaved nature of structural mechanics relations generally ensures
that equation 13 is the mapping of equation 12 onto the load effect space.
Equation 16 is thus the mapping onto the space Xj, X2, cse, X not only of
equation 12, but of equation 13 as well. Therefore, once it is made clear-at
the outset that the problem is formulated in the load, or in the load effect,
space, it is permissible to refer gemerically to Q and Qg as "loads" and to

R and R, as "resistances™, and to omit the index "e" in equation 13.

The important case is noted where relations between loads and/or resistances
and more fundamental variables of the problem, Xi, X2, ... Xy, can only be
obtained numerically. 1In that case, equation 16 cannot, in general, be
written in closed form.

It is useful in various applications to map the failure region, the safe region,

and the failure boundary onto the space of the variables Yl, Y2, eeey Yy,
defined by transformations

Yi = Yi(Xl, X2, coey Xn) (i = l, 2, ceey r) ) (17)

For example, if in equation 16 X; = p, and X5 = U, where p = air density

and U = wind speed, a variable regresenting the dynamic pressure may be defined
by the transformation Y; = 1/2 pU®, and equation 16 may be mapped onto the
space of the variables Yy, X3, X4, ees, X;. Another example is the frequently
used set of transformations

Y; = 4nR (18)

Yy = 4nQ (19

@ These are sometimes referred to as basic variables. We will use here simply
the term "variables™, since what constitutes a basic variable is in many
instances a matter of convention. For example, the hourly wind speed at 10 m
above ground in open terrain, which is regarded in most applications as a
basic variable, depends in turn upon various random storm characteristics,
such as the difference between atmospheric pressures at the center and the
periphery of the storm, the radius of maximum storm winds, and so forth.
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We consider a failure boundary in the space of a given set of variables, and
denote by S its mapping in the space of the corresponding reduced variables.

The safety index, B, is defined as the shortest distance in this space between
the origin and the boundary S [14]2, The point on the boundary S that is
closest to the origin, as well as its mapping in the space of the original
variables, is referred to as the checking point. For any given structural
problem, the numerical value of the safety index depends upon the set of vari-
ables in which the problem is formulated. The examples that follow illustrate
the meaning of the safety index and the dependence of its numerical value upon
the set of variables being used.

Example 1. It is assumed that the only random variable of the problem is
the load (effect) Q. The resistance-—-a deterministic quantity-—is denoted
by R. The mapping of the failure boundary

Q-R=0 _ (23)
onto the space of the reduced variable q, = (Q —'5)/00 (i.e., onto the

axis 0q,.—~see figure 1) is a point, Qs whose distance from the origin
0 is B = (R ~ O)/OQ. The safety index represents in this case the dif-

ference between the values R and Q measured in terms of standard deviations,

9Q. It is clear that the larger the safety index B (i.e., the larger
the difference R - Q for any given o, or the smaller J) for any given
difference R -~ Q), the smaller the probability that Q2 R.

Example 2. Consider the failure boundary in the load space (equation
10), and assume that both R and Q are random variables. The mapping
of equation 12 onto the space of the reduced variables qr = (Q - Q)/oQ
and r, = (R - R)/OQ is the line [13]

0dr + Q- ORrr =R =0 (24)
(figure 2), The distance between the origin and this line is
R-0 - (25)

(URZ + on) 1/2

B =

2 This definition is applicable to statistically independent variables. If
the variables of the problem are correlated, they can be transformed by a
linear operator into a set of independent variables [14]. Note that an
alternative, generalized safety index was proposed in reference 15, whose

performance is superior in situations where the failure boundaries are nonlinear

(see also Chapter 9 of reference 16).



largest lifetime wind speed are U = 70 mph, oy = 8.61 mph. An expansion
of equation 30 in a Taylor series about the mean, U, yields

Q = al%(1 + v3) (31)
and
Vo = 2Vy ’ (32)

i.e., 0= 13.3 ksi and 0g * 3.27 ksi. The equation of the failure
surface in the space of the variables U, R is

a2 - R =0 | (33)

and its mapping in the space of the reduced variables Uy, rr is

— . —
(up + 892 =R (r +R) (34)
o] 2 o
U aoU R

The value of the safety lndex is B =*4.31 (figure 3). The coordinates of
the checking point are ry = -2.51, u, = 3.50, to which there corre-

spond in the U, R space the coordinates U* = 100.14 mph, R* = 26.76 ksi.
It can be verified that the values of the safety index corresponding to
the variables Q, R (equation 25) and %£nQ, &nR (equation 29) are

B = 4,66 and B = 3.69, respectively.

Note that the mean and standard deviation of the largest lifetime wind speed or
of the largest lifetime load, which are needed for the calculation of the safety
index, cannot be estimated directly from measured data, but must be obtained
from the probability distribution of the lifetime extreme. This distribution

is estimated from the parent distribution that best fits the measured annual
extreme data. Knowledge of, or an assumption concerning, the parent proba-
bility distribution is required for the estimation of the safety index in all
cases involving a random variable that represents a lifetime extreme.

Safety Indices and Failure Probabilities: The Case of Normal Variables
Consider the space of the variables Q and R, and assume that both variables are
normally distributed. Note that the failure boundary (equation 12) is lin-
ear. Since the variate R - Q is normally distributed, the probability of
failure can be written as

Pf = F(R -~ Q< 0)

l(x‘(R - Q))2] dx
2 O'R_Q

0
1
= -F——“OR_Q {m exp [—

1-0¢ (_R=-0_) (35)
/ORZ + 002
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is possible that two members, one subjected to gravity loads and the other to
wind or wave loads, will have widely different failure probabilities even if
their safety indices calculated by equation 29 are nearly equal. In this

case, or in similar cases, a comparative reliability analysis would require

the estimation of the failure probability by equation 22 or by alternative,
approximate methods. A few such methods are briefly described in the following
section.,

Approximate Methods for Estimating Failure Probabilities

We first describe the method referred to as normalization at the checking point
[19]. The principle of the method is to transform the variables, Xj, into a
set of approximately equivalent normal variables, Xg, having the following
property: '

pxi<x§) = £(x0%)
=L ¢(x§®) (40)
i
PXi(XI) = F(x3%)
= 0(x; ™) (41)
r

where i =1, 2, ..., m, the asterisk denotes the checking point, py and Py

are the probability density function and cumulative distribution function of Xj,
respectively, f and ¢ are the normal and standardized normal probability density
function, respectively, F and ¢ are the normal and standardized normal cumula-
tive distribution function, respectively, x? is the reduced variable corre-

r
sponding to Xg, and ogn is the standard deviation of X%. From equations
40 and 41 it follows that

_ o7 pxD]

an (42)
i *
Py, (%3)
<n _ %* -l %*
Xi = Xi - ¢ [Pxi(xi)]cxfi.l (43)

where the bar denotes mean value, Once i? and oyn are obtained from

equations 42 and 43, the problem can be restated in the space of the reduced
variables, xg « The safety index, B, is the distance in this space between

T
the origin and the failure boundary. A computer program for calculating this
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Equation 47 can be written as

%* o —

N .

The quantity YY is termed the partial safety factor applicable to the mean of
the variable Xj.

In design applications the means, Xj, are seldom used, and nominal design

values, such as the 100-year wave, the allowable steel stress, F;, or the nominal
yield stress, Fy, are employed instead. Let these nominal values be denoted by
X.. Equation 46 can be rewritten as [13]

i
/ ,
X; = Ygixi (1 =1, 2, eee, 1) (48)
where
___ii (49)
Xi ‘ .

The factor Y§ is the partial safety factor applicéble to the nominal design

value of the variable Xi.

In the particular case in which the variables of concern are the load, Q, and the
resistance, R, the partial safety factors are referred to as the load and
resistance factor.~ For the resistance factor the notation ¢p or ¢E is used

in lieu of YR OF Yg-

From the definition of the partial safety factor (equation 47) and the definition
of the checking point in the space of the reduced variables corresponding to

Yy = ZnR and Y2 = &nQ, it follows that if higher order terms (see equation

27) are neglected

¢£ = eXP(-OlRBVR) . k | (50)
Yg = exp(aghly) | (5D)
ap = cos[tan’l(VQ/VR)] : (52)
ag = sin[tan'l(VQ/VR)] (53)
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3. SUMMARY AND CONCLUSIONS

A review was presented of fundamental topics in structural reliability that are
potentially applicable to ocean engineering problems. As mentioned in the
report, although a number of studies concerned with structural systems have
been reported (e.g., references 2 to 7), the practical usefulness of such
studies remains limited, particularly as far as ocean engineering applications
are concerned. The present report is concerned with applications to individual
members.

Some of the potential advantages of reliability methods in the context of
offshore platform analysis and design have been outlined in reference 25. 1In
the present report such methods have been subjected to an independent critical
review aimed at highlighting possible difficulties and pitfalls in their
application. Principal conclusions of the review are:

1. Uncertainties with respect to structural behavior and to probabilistic
characterizations of relevant parameters can render difficult, if not
impossible, meaningful comparisons between estimated safety levels of
members belonging to different types of structure or to structures subjected
to different types of load. These difficulties are compounded by the
failure of most current reliability methods to account adequately for the
complexities of systems reliability behavior, particularly in cases
involving time dependent loads such as wind or waves.

2, Reliability methods based on the use of safety indices cannot be applied
in cases involving a random variable that represents a lifetime extreme
unless an explicit assumption is made with regard to the parent probability
distribution of that variable.

3. Reliability methods based on the use of safety indices or load and
resistance factors can in certain instances provide useful comparisons
_ between the safety levels of certain types of members. This is the case
only if it can be determined that the relation between the safety index
and the failure probability for those members is independent of, or weakly
dependent upon, the relative values of the mean and coefficients of varia-
tion of the resistances and of the loads.

4, Simplified approximate expressions for partial safety factors should be
used with caution, and their range of applicability should be carefully
checked against the "exact" expressions from which they are derived.

The writers believe that the observations presented in this report can be
helpful in ensuring that reliability analyses conducted for offshore
structures can be used prudently and confidently by both practitioners and
regulatory bodies. '
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(-10.41,-8.13)

Figure 3. Failure boundary in space of coordinates up and rp
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Figure 5.

Probability distribution of steel yield stress
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